48 research outputs found

    A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing

    Full text link
    Motivated by an open problem from graph drawing, we study several partitioning problems for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n lines in R^2, there is a line l such that in both line sets, for both halfplanes delimited by l, there are n^{1/2} lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines there is a point such that for any halfplane containing that point there are (n/3)^{1/2} of the lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and obtain a center transversal theorem, a same-type lemma, and a positive portion Erdos-Szekeres theorem for hyperplane arrangements. This is done by formulating a generalization of the center transversal theorem which applies to set functions that are much more general than measures. Back to Graph Drawing (and in the plane), we completely solve the open problem that motivated our search: there is no set of n labelled lines that are universal for all n-vertex labelled planar graphs. As a side note, we prove that every set of n (unlabelled) lines is universal for all n-vertex (unlabelled) planar graphs

    Track Layouts of Graphs

    Full text link
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad

    Notes on large angle crossing graphs

    Full text link
    A graph G is an a-angle crossing (aAC) graph if every pair of crossing edges in G intersect at an angle of at least a. The concept of right angle crossing (RAC) graphs (a=Pi/2) was recently introduced by Didimo et. al. It was shown that any RAC graph with n vertices has at most 4n-10 edges and that there are infinitely many values of n for which there exists a RAC graph with n vertices and 4n-10 edges. In this paper, we give upper and lower bounds for the number of edges in aAC graphs for all 0 < a < Pi/2

    Robust Geometric Spanners

    Full text link
    Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.Comment: 18 pages, 8 figure
    corecore